Внутренняя (медиальная) поверхность полушария, главные борозды и извилины. Локализация функций, связанных с первой сигнальной системой
Страница 1

Биология » Понятие об эволюции и история эволюционной теории » Внутренняя (медиальная) поверхность полушария, главные борозды и извилины. Локализация функций, связанных с первой сигнальной системой

Конечный мозг (telencephalon) состоит из двух полушарий большого мозга, отделенных друг от друга продольной щелью. В глубине щели расположено соединяющее их мозолистое тело. Кроме мозолистого тела полушария соединяются также передней, задней спайками и спайкой свода. В каждом полушарии выделяются по три полюса: лобный, затылочный и височный. Три края (верхний, нижний и медиальный) делят полушария на три поверхности: верхнелатеральную, медиальную и нижнюю. Каждое полушарие делится на доли. Центральная борозда (роландова) отделяет лобную долю от теменной, латеральная борозда (сильвиева) височную от лобной и теменной, теменно-затылочная борозда разделяет теменную и затылочную доли. В глубине латеральной борозды располагается островковая доля. Более мелкие борозды делят доли на извилины.

Медиальная поверхность полушария большого мозга. В образовании медиальной поверхности полушария большого мозга принимают участия все его доли, кроме островковой. Борозда мозолистого тела огибает его сверху, отделяя мозолистое тело от поясничной извилины, направляется книзу и вперед и продолжается в борозду гиппокампа.

Над поясной извилиной проходит поясная борозда, которая начинается кпереди и книзу от клюва мозолистого тела. Поднимаясь вверх, борозда поворачивает назад и направляется параллельно борозде мозолистого тела. На уровне его валика от поясной борозды вверх отходит ее краевая часть, а сама борозда продолжается в подтеменную борозду. Краевая часть поясной борозды сзади ограничивает околоцентральную дольку, а спереди - предклинье, которое относится к теменной доли. Книзу и кзади через перешеек поясная извилина переходит в парагиппокампальную извилину, которая заканчивается спереди крючком и ограниченна сверху бороздой гиппокампа. Поясную извилину, перешеек и парагиппокампальную извилину объединяют под названием сводчатой извилины. В глубине борозды гиппокампа расположена зубчатая извилина. На уровне валика мозолистого тела от поясной борозды вверх ответвляется краевая часть поясной борозды.

В анализе структуры коры участвовали многие ученые (Экономо, Бец, Фогт, Бейли и др.) Их карты полей коры различаются между собой количеством полей, отсутствием четких пограничных линий, большой индивидуальной вариабельностью. Наиболее признаны карты К. Бродмана, который выделил 52 поля на поверхности коры полушарий.

И.П. Павлов считал, что кору полушарий можно представить как совокупность центров различных анализаторов. Считается, что центр состоит из ядра, имеющего определенную локализацию в коре, между которыми находятся рассеянные элементы, относящиеся к разным анализаторам. Это позволяет говорить о динамической локализации функций в коре полушарий большого мозга. При этом функции полей коры связаны с противоположной половиной организма человека, т.к. все пути их связывающие обязательно перекрещиваются. И. П. Павлов разделил все центры анализаторов на две сигнальные системы.

К ПЕРВОЙ СИГНАЛЬНОЙ СИСТЕМЕ (SI) он отнес те центры, которые воспринимают сигналы от внешней или внутренней среды в виде ощущений, впечатлений, представлений (за исключением речи и слова). Эти центры имеются как у животных, так и у человека. Они расположены в обоих полушариях, даны от рождения и не восстанавливаются при разрушении. К ним относятся (рис. 2.1, 2.2): 1, 2, 3 - ядра общей чувствительности (температурной, болевой, осязательной и проприоцептивной). 4, 6 - ядро двигательного анализатора. В нем развиты клетки 5 слоя коры, которые иннервируют мышцы противоположной половины тела. Мышцы тела спроецированы на переднюю центральную извилину (моторное поле) и околоцентральную дольку как бы вверх ногами (двигательный гомункулус). 8 - премоторное поле. 46 - сочетанный поворот головы и глаз. Это ядро принимает импульсы от рецепторов мышц глазного яблока и от представительства в коре сетчатки глаза (от поля 17). 5, 7 - стереогнозии. В этот центр проецируются рецепторы верхней конечности для узнавания предметов на ощупь. 40 - праксии. Осуществление всех сложных комбинированных движений, приобретенных в результате практической деятельности, преимущественно профессиональной. 41, 42, 52 - ядро слухового анализатора (на извилинах Гешля), к его клеткам подходят волокна от левого и правого уха, поэтому одностороннее поражение ядра не приводит к полной утрате слуха: 41 - первичное поле, оно воспринимает импульсы, 42 - психологическое поле, слуховая память, 52 - оценочное поле, с его помощь ориентируемся в пространстве. 17, 18, 19- ядро зрительного анализатора, к его клеткам подходят волокна от латеральной стороны сетчатки глаза своей половины тела, а также от медиальной сетчатки глаза противоположной половины тела. Поэтому полная корковая слепота наступает при поражении центров обоих полушарий: 17 - первичное поле, 18 - психологическое, 19 - оценочное. А, Е, 11 - ядро обонятельного анализатора, расположено в наиболее древних структурах коры больших полушарий (в крючке и гиппокампе) 43 - ядро вкусового анализатора. Как отмечал В. М. Бехтерев, этот анализатор тесно взаимосвязан с обонятельными полями обоих полушарий.

Страницы: 1 2


Другое по теме:

Природные ритмы и человечество
В самом общем случае в эволюции человека можно выделить три основных этапа: появление археоантропа, смена археоантропа палеоантропом и смена палеоантропа неоантропом. Последняя крупная перестройка в органическом мире относится к границе, ...

Структура интеинов
Условно интеины можно поделить на две большие группы — классические интеины и мини-интеины. Классический интеин состоит из двух доменов — сплайсингового домена, который как раз и катализирует вырезание интеина из белка-хозяина и последующ ...

Простые модели движения мембранных компонентов
На рис. 2 представлены некоторые модели, использующиеся для анализа поступательного движения молекул внутри мембранного бислоя. Такие модели необходимы для интерпретации экспериментальных данных с точки зрения молекулярного движения. 1. ...