Внутренняя энергия
Страница 4

Майер определил, что количество теплоты, необходимое для нагревания единицы массы газа на один градус, совершаемое при постоянном давлении (С), всегда больше, чем количество теплоты, необходимое для нагревания единицы массы вещества на один градус при постоянном объеме (Cv). Нагревание при постоянном давлении отличается от нагревания при постоянном объеме тем, что изменение объема газа при расширении сопровождается толканием поршня, то есть совершением работы. Если нагревание при постоянном объеме идет только на увеличение внутренней энергии газа, то нагревание при постоянном давлении, помимо такого же увеличения внутренней энергии газа, сопровождается также совершением механической работы. Если рассматривать теплоту как "силу", рассуждал Майер (а под "силой" он понимал то, что впоследствии стало называться энергией), то тогда понятно, почему С больше, чем С . Более того, если найти, на сколько С больше, чем Су, и сопоставить полученный результат с величиной совершенной работы, то можно получить механический эквивалент теплоты. Этот результат Майер вычислил в 1841 году. А в 1845 году в работе "Органическое движение в связи с обменом веществ" он впервые дает формулировку закона сохранения и превращения энергии. Правда, он употребляет другую терминологию, используя понятия "сила движения", "сила падения", "химическая сила", "теплота", "электричество" и т. д. Сейчас мы заменили бы слово "сила" словом "энергия". "Сила как причина движения является неразрушимым объектом, никакое действие не возникает без причины. Никакая причина не исчезнет без соответствующего ей действия . Количественная неизменность данного есть верховный закон природы . Различные силы могут превращаться друг в друга. Эта сила в вечной смене циркулирует как в мертвой, так и в живой природе". "При всех физических и химических процессах данная сила остается постоянной величиной"10. Таким образом, Майер определил механический эквивалент теплоты, отверг теплород как вещественную субстанцию, определил теплоту как "силу" движения и сформулировал закон сохранения и превращения "сил". Однако при определении механического эквивалента теплоты он не точно проделал расчет. И важное место в истории развития науки о тепловых явлениях заняли результаты опытов Джоуля, которые были проделаны с такой тщательностью, что оказали убедительное воздействие на умы современников, сломив, в конце концов, их сопротивление. Опыт Джоуля состоял в том, что опускающийся груз вращал лопатку, погруженную в различные жидкости. В результате жидкость перемешивалась, что приводило к увеличению температуры смеси, которую Джоуль измерял термометром. Сопоставляя значение механической работы опускающегося груза с количеством теплоты, необходимой для нагревания смеси жидкостей на соответствующую температуру, Джоуль очень точно определил значение механического эквивалента теплоты.

Честь открытия механической теории тепла с Майером и Джоулем разделяет также датский инженер Кольдинг, поставивший эксперимент по измерению теплоты, выделяющаяся при движении тел с различной скоростью по металлическим, деревянным и прочим поверхностям вследствие трения.

Цикл открытий 40гХ годов XIX века был в известной мере подкреплен работой Германа Гельмгольца "О сохранении силы", вышедшей в 1847 году. Герман Гельмгольц, немецкий врач и естествоиспытатель, впоследствии стал одним из выдающихся физиков XIX века. В своей работе Г. Гельмгольц придает принципу сохранения строгую и четкую форму. Он вводит новую количественную характеристику, которая равна работе по величине, но берется с противоположным знаком. Эта характеристика соответствует современному понятию потенциальной энергии. Гельмгольц назвал ее напряжением, а вместо величины mV2 он предлагает рассматривать в качестве "живой силы" величину mV2/2 и получает закон сохранения механической "силы":

живая сила + напряжение = const (постоянно)

"Сумма существующих в природе напряженных сил и живых сил постоянна. В этой наиболее общей формулировке мы можем наш закон назвать принципом сохранения сил"11.

Надо сказать, что Майер придавал закону сохранения не просто немеханический характер, в отличие от Гельмгольца, сформулировавшего, по существу, закон сохранения механической энергии, но и распространил его как на "мертвую" (включающую физические и химические процессы), так и на "живую" природу. Однако строгая формулировка Гельмгольца позволяла выйти за рамки механики и придать впоследствии закону сохранения универсальный характер.

Работами Майера, Джоуля, Кольдинга и Гельмгольца был выработан "закон сохранения сил". Тем не менее, первая ясная формулировка этого закона была получена Рудольфом Клаузиусом и Уильямом Томсоном (лордом Кельвином), которые внесли наиболее значительный вклад в развитие термодинамики. Сади Карно положил начало новому методу рассмотрения превращения теплоты и работы друг в друга в макроскопических системах, в первую очередь, в тепловых машинах, и тем самым явился основателем науки, которая впоследствии была названа Уильямом Томсоном "термодинамикой". Термодинамическое рассмотрение ограничивается, в основном, изучением особенностей превращения тепловой формы движения в другие формы, не интересуясь вопросом микроскопического движения частиц, составляющих веществ.

Страницы: 1 2 3 4 5


Другое по теме:

Общая характеристика растительности водоемов
Водоёмы служат средой обитания многочисленных и разнообразных животных и растений, существующих в условиях тесной зависимости как от внешней среды, так и друг от друга. В свою очередь жизнедеятельность живых организмов оказывает активное ...

«Алчуринги». О людях, превратившихся в камни
Окаменелости. В конце века люди, уставшие от завоевательного натиска науки и скучающие по утраченной ритуально-мистической жизни, вновь стали отвергать точные знания. Но именно за последние годы накопилось столько информации, что теперь м ...

Биохимические аспекты обучения и памяти
Обучение как адаптивные изменения в ответ на воздействия окружающей среды. Нейрохимические корреляты обучения и памяти как компромисс между поведенческими критериями и достижениями в области молекулярной и клеточной биологии. Формирование ...