Динамический хаос - фундаментальное свойство реальности
Страница 2

Биология » Концепции современного естествознания » Динамический хаос - фундаментальное свойство реальности

В математике фигуры, одинаковые по форме, но различающиеся размерами, называются подобными.

Похожесть процесса на самого себя при изменении масштаба называют самоподобием, масштабной инвариантностью, скейлингом (scale - масштаб, размер).

В последние десятилетия самоподобие начинают открывать всюду: в линиях берега, разряда молнии и трещин; поверхностях гор, облаков и кочанов цветной капусты; ветвлении деревьев и кровеносных сосудов.

В чем суть самоподобия? Общая картина не меняется или не зависит от масштаба. Объекты, обладающие таким свойством, американский математик Б.Мандельброт в 1975 г. предложил называть “фракталами”.

Фракталы обнаруживают в тех процессах и явлениях, о которых мы привыкли думать как о беспорядочных, хаотичных, потому что в них участвует множество случайных факторов. Поэтому говорят, что вероятностный, или стохастический хаос носит фрактальный характер. Там, где господствует случай, формы фрактальны. Это имеет не только умозрительный интерес: например, в Голливуде декорации, имитирующие горный пейзаж, разрабатывает компьютер на основе алгоритма, учитывающего фрактальность горной поверхности. В итоге на экране получается картинка, очень похожая на настоящие горы.

Фракталы - объекты с сильно извилистой, изрезанной или пересеченной границей. Обычные меры длины, площади и объема к фракталам неприменимы. Геометрию фракталов принято описывать другими характеристиками, например, размерностью Хаусдорфа-Безикевича. Для нефрактальных (гладких) объектов эта размерность совпадает с обычной (топологической) размерностью (равной 0 для точки, 1 - для линии, 2 - для плоской фигуры, 3 - для тела) и принимает целочисленные значения, но для фрактальных объектов размерность принимает дробные значения. Например, для очень извилистой линии она может бытьравна 1,03 (уже не линия, но еще не плоская фигура).

Мир бестелесный, слышный, но незримый,

Теперь роится в хаосе ночном .

Ф.Тютчев

Конечно, в природе самоподобие простирается лишь до какого-то предела - рано или поздно с изменением размеров происходит качественный скачок. Например, разглядывая кровеносные сосуды во все более сильный микроскоп, мы в конце концов увидим отдельные клетки. Но мысленно можно рассмотреть случай, когда скейлинг продолжается до бесконечности: примером может служить “ковер Серпинского”.

О, бурь заснувших не буди -

Под ними хаос шевелится! .

Ф.Тютчев

Успехи классической физики основывались на том, что многие явления, например, движение планет, описываются линейными дифференциальными уравнениями, для которых можно найти общее решение. Нужно только подставить в них начальные условия (координаты точки, из которой движение начиналось), и траектория полностью предсказывалась. Конечно, начальные условия желательно знать поточнее, но малые погрешности не страшны, так приведут к малым же отклонениям в решении.

Когда научились решать простые нелинейные уравнения (а большинству реальных процессов соответствуют именно они), то выяснили, что определяющее влияние начальных условий есть уже не исключение, а правило. Такой вывод сделал еще сто лет назад А.Пуанкаре, когда рассмотрел движение трех тел, связанных взаимным тяготением. И все эти решения были в определенном смысле просты: например тяготеющие тела или убегут в бесконечность, или остановятся, или вернутся в исходные положения, и все начнется сначала - траектории будут циклическими (состояние, к которому система в конце концов приходит, называют “аттрактором”).

Но когда с появлением ЭВМ стали изучать более сложные нелинейные уравнения, оказалось, что решения могут быть значительно сложнее: возможно, что траектории никогда себя не повторяют - они запутанны и нерегулярны (в этих случаях говорят о “странном аттракторе”).

Страницы: 1 2 3


Другое по теме:

Атомы и молекулы
Ядра имеют положительный электрический заряд и окружены роем отрицательно заряженных электронов. Такое электрически нейтральное образование называют атомом. Атом есть наименьшая структурная единица химических элементов. Атомные электроны ...

Результаты исследования и их обсуждение. Определение адреналина, адренокортикотропного гормона, кортизола и кортикостерона в сыворотке крови спортсменов и не спортсменов в норме
В ходе работы были получены следующие результаты. Уровень адреналина у спортсменов и контрольной группы до нагрузки имел практически одинаковые показатели (рис. 1). Уровень АКТГ у спортсменов в физиологическом состоянии был выше, чем у ко ...

Планетарная модель атома Резерфорда
Резерфорд установил, что α-частицы являются ионами гелия. В 1909 г. он начал работу по рассеиванию α-частиц на золотой фольге и обнаружил странное явление – некоторые α-частицы отклонялись при этом на очень большие углы. К ...