Диссипативные системы вдали от равновесия

Биология » Концепции современного естествознания » Диссипативные системы вдали от равновесия

Диссипативные структуры включают все типы самоорганизации: колебательные процессы, пространственную организацию, пространственно-временное структурирование, а также любую другую последовательность процессов, связанных с когерентными свойствами, наблюдаемыми в системе вне области устойчивости гомогенного состояния (А.Баблоянц, 1990).

Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении.

Для возникновения диссипативных структур необходимы следующие условия:

1. Система должна быть открытой и постоянно обмениваться веществом и энергией с окружающей средой. Это означает, что химические, биохимические и гидродинамические системы должны находиться вдали от равновесия.

2. В системе должны протекать различные каталитические, кросс-каталитические процессы, а также регуляция по типу обратной связи. Такого рода процессы описываются нелинейными дифференциальными уравнениями.

3. После некоторого критического значения параметра системы или какого-либо внешнего воздействия однородное стационарное состояние становится неустойчивым, и тогда ничтожно малое возмущение в окружении системы может вызвать ее переход в новое стационарное состояние, режим которого также соответствует упорядоченному состоянию.

Наиболее важной характеристикой диссипативных структур является то, что они возникают и сохраняются только в неравновесных условиях. Под влиянием флуктуаций отдельные элементы системы кооперируются, обнаруживая при этом такое поведение, которое характеризует систему в целом и которое никак нельзя было бы ожидать или понять на основании свойств отдельных ее элементов.

Диссипативные структуры появляются всякий раз, когда система, способная к самоорганизации за счет своих кооперативных свойств, измеряет время и организует пространство для того, чтобы “выжить” при различных воздействиях, оказанных на нее, или для того, чтобы лучше использовать окружающую среду.

Идея диссипативных структур получила широкое распространение в тех областях знания, из которых она родилась. Особенно возродился интерес к теории нелинейных дифференциальных уравнений. Очень популярными стали математические модели для различных биологических процессов, протекающих в единичных клетках или в многоклеточных ансамблях. В различных химических реакторах было обнаружено много неожиданных типов осциллирующего поведения. В жидкостях были открыты разнообразные неожиданные упорядоченные, квазиколебательные и хаотические состояния.

На основе всех этих наблюдений возникла новая ветвь исследований, названная областью нелинейных явлений, которая стала наиболее многообещающей областью макроскопической физики.

Самоорганизация диссипативных структур может произойти только вдали от состояния термодинамического равновесия.

Когда характеризующие динамическую систему переменные изменяются во времени, они могут быть описаны в виде дифференциальных уравнений. Дифференциальные уравнения приобретают нелинейную форму, как только мы переходим к описанию процессов возможной конкуренции самоорганизации и самодеструкции каких-либо величин.

Можно ожидать, что такие системы буду самопроизвольно проявлять черты кооперативного поведения и различного рода пространственно-временную организацию. Вот почему в последние годы рамки диссипативных структур расширились и захватили даже такие области, как социобиология, социология, социальная экономика и экономическая наука.


Другое по теме:

Самоорганизация в живой и неживой природе
Самоорганизация означает изменение структуры системы под действием только внутренних факторов. Поэтому, в строгом смысле, этот термин применим только к Вселенной в целом. А все остальные системы - открытые и находятся под воздействием вн ...

Перечислить меристемные ткани; указать их местоположение в теле растения и те постоянные ткани, которые они образуют. Объяснить, почему одни из меристем называются первичными, а другие – вторичными
Меристемы (греч. meristos - делимый, делитель) стоят особняком среди других тканей, поскольку состоят из живых недифференцированных клеток, способных постоянно делиться. В онтогенезе этот тип растительных тканей возникает первым в результ ...

Щелочные протеиназы рода Bacillus
Внеклеточные щелочные протеиназы выполняют ряд важных катаболических функций вне клетки. Наиболее очевидной функцией щелочных протеиназ является расщепление белков и других высокомолекулярных субстратов, содержащихся в питательной среде, ...