Панорама современного естествознания
Страница 7

Биология » Естествознание XX века » Панорама современного естествознания

До утверждения этой теории существовала теория стационарного состояния, согласно которой Вселенная всегда была почти такой, какой мы видим ее сейчас. В XVIII, XIX и даже в первой половине XX века в астрономии господствовал взгляд на Вселенную как на нечто статическое, не изменяющееся. Изучались движения планет и комет, химический состав звездных атмосфер и т. д. Но истинная картина меняющейся, богатой «скачками» и взрывами Вселенной стала ясной астрономам только во второй половине XX века.

Основываясь на теории расширяющейся Вселенной, оказалось возможным проследить развитие Вселенной в «обратную сторону», т. е. попробовать вернуться возможно дальше назад. Хотя осуществить такую реконструкцию было далеко не просто, но все же она оказалась успешной.

По современным представлениям, вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного места и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы.

Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100 000 миллионов К (10й К). При такой высокой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 с после взрыва, несмотря на очень высокую температуру, была огромной — в 4 000 миллионов раз больше, чем у воды.

В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов (109 К). Плотность вещества также снизилась, но еще была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра атомов, в частности ядра тяжелого водорода (дейтерия) и ядра гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия. Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звезд.

Как следует из сказанного, за последние примерно 50 лет достигнуты значительные результаты в изучении звезд, галактик и даже Вселенной и их эволюции.

Один из главных выводов, к которому пришли астрономия и астрофизика, состоит в том, что Вселенная находится в состоянии непрерывной эволюции. Остановимся на эволюции звезд. Звезды образуются из газопылевой межзвездной среды, главным образом из водорода и гелия, в результате действия сил гравитации. Проследить эволюцию звезд помог факт, что во Вселенной существуют звезды всех «возрастов». Более того, образование новых звезд происходит и теперь.

Под действием гравитационных сил звезда сжимается и становится все более горячей. Когда температура достигает приблизительно 10 млн К, внутри звезды начинается термоядерная реакция. Для звезды начинается новая стадия эволюции. Сопротивление силам гравитации будет оказывать растущее давление внутри звезды, возникшее вследствие протекания термоядерной реакции. В некоторый момент будет достигнуто равновесие. В этом состоянии звезда может существовать долгое время, излучая в пространство огромную энергию. Например, Солнце в этом состоянии будет существовать 13 млрд. лет, из которых истекли 5 млрд.

Рано или поздно наступает такой момент, когда водород, необходимый для термоядерной реакции, будет израсходован. Температура и давление внутри звезды начнут снижаться, гравитационные силы начнут преобладать. Наступает новый этап эволюции звезды. Ее ядро, состоящее теперь из гелия (продукт реакции), начинает сжижаться, образуя плоскую горячую область. Но термоядерная реакция будет еще продолжаться на периферии, где еще сохранился водород. В это время, как следует из расчетов, размер звезды и ее светимость будет увеличиваться. Звезда превратится в так называемый красный гигант.

Страницы: 2 3 4 5 6 7 8 9 10 11 12


Другое по теме:

Сравнительная характеристика ихтиофауны рек Сутары и Бира
Для характеристики ихтиофауны рек Сутары и Бира мы приводим данные, встречаемости различных видов рыб, которые включают результаты научных исследований (Бурик, 2006-2007), опросным данным населения и собственным наблюдениям (табл. 3.1.4). ...

Гипофиз
Гипофиз — это железа размером 10—15 мм, ее масса 0,5—0,7 г. Расположен в гипофизарной ямке турецкого седла клиновидной кости. Гипофиз координирует функции многих других эндокринных органов. Кроме этого, гипофиз и анатомически, и функциона ...

Мегамир Звезды. Галактики. Вселенная
Солнце: масса г, радиус км, средняя плотность , находится от Земли на расстоянии около см, которое свет проходит за 499 с - это расстояние называют астрономической единицей а.е. Самая далекая от Солнца планета Плутон находится от него на ...