Панорама современного естествознания
Страница 20

Биология » Естествознание XX века » Панорама современного естествознания

Развитие проблемы генетического кода прошло несколько этапов. Предтечами этой проблемы можно считать многих выдающихся исследователей. В частности, Н.К. Кольцов (1927,1935) предложил в общей форме идею молекулы-гена и матричный принцип ее дублирования. Э. Шрёдингер (1944) сформулировал необходимость кодирования генетической информации в структуре генов-молекул. П. Колдуэлл и С. Хиншельвуд (1950) предложили идею матричного синтеза белков на ДНК. А. Дауне (1952) сформулировал гипотезу о синтезе белков на РНК.

Научные представления о генетическом коде как о реальной проблеме эксперимента и теории были сформулированы Г.А. Гамовым сразу же после обоснования Дж. Уотсоном и Ф. Криком (1953) модели строения двойной спирали ДНК. Первый этап изучения проблемы (1953-1961) можно назвать гипотетическим. Из модели Уотсона— Крика вытекало представление о линейной последовательности ДНК (некий текст), построенной из четырех типов нуклеотидов (А, Т, G и С — четыре символа алфавита). Но кодируемые белки тоже имеют линейную первичную структуру (некий текст), построенную из 20 типов канонических аминокислот (алфавит из 20 символов). Поэтому Г.А. Гамов (1954) сразу же сформулировал идею генетического кода в конкретном смысле — как соответствие двух текстов, записанных при помощи двух разных алфавитов. Кроме того, он предложил использовать технические средства криптографии (расшифровки неизвестных кодов) для решения центральной проблемы генетики.

Генетический код сразу же приобрел облик великой загадки природы, ребуса для остроумных. Многие сотни математиков, физиков, химиков, биологов, включая Г.А. Гамова, Ф. Крика и др., предложили гипотетические варианты генетического кода, которые представляют теперь лишь исторический интерес. Реальный код оказался совсем иным.

Научными результатами первого этапа можно считать: 1) постановку проблемы генетического кода; 2): формирование понятий линейного текста для нуклеиновых кислот и белков, генетической информации, записанной в этих текстах при помощи символов алфавита; 3) представление о матричной роли РНК в трансляции; 4) понятие о кодонах и доказательство их неперекрывания; 5) предположение о триплетности кодонов и коллинеарности гена и белка, доказанное лишь в дальнейшем; и т. д.

Второй этап (1961-1966) можно назвать экспериментальным, так как в этот период генетический код был расшифрован в прямом эксперименте.

Третий этап изучения проблемы генетического кода (после 1966 года) связан с углубленным исследованием молекулярных механизмов кодирования, системных свойств генетического кода: симметрии, регулярности, помехоустойчивости, универсальности, а также путей его возникновения и эволюции.

В результате исследований геномов сформулированы специфические задачи, созданы методы, компьютерные программы, роботы, особый и изощренный математический аппарат. Тем самым заложены основы новой науки, названной «геномикой». Только что вышел в свет первый учебник для вузов, написанный Чарлзом Кэнтором и Кассандрой Смит, так и названный «Геномика».

При расшифровке последовательностей нуклеотидов геномов просто устроенных бактерий и вирусов генетикам удалось с точностью до одного нуклеотида определить их последовательность в ДНК. Затем настал черед многоклеточных организмов, суммарная длина ДНК в хромосомах которых была в десятки, сотни и даже сотни тысяч раз больше. В начале декабря 1998 года было объявлено об окончании секвенирования генома круглого червя Caenorhabditis elegans, первого многоклеточного животного. Однако сказать однозначно, что при этом удалось определить положение каждого нуклеотида в ДНК этой нематоды, нельзя. Да, было доказано, что геном С. elegans содержит 97 млн пар оснований и несет 19 099 генов (и ни одного больше!), но тем не менее 100 или чуть больше небольших по размеру отрезков (около сотни нуклеотидов каждый) остались нерасшифрованными. К ноябрю 1999 года это число неопределенностей уменьшилось — осталось около 70 неясных точек, но они пока ускользают от исследователей. Это связано частично с тем, что в данных точках есть зоны повторения нуклеотидов. Во время наработки копий этих участков с помощью полимеразной цепной реакции (ПЦР) зоны повторяющихся нуклеотидов могут вести себя необычно: образовывать шпильки или изломы, нераспознаваемые или неправильно читаемые ДНК-полимеразами — ферментами, удваивающими (амплифицирующими) данные участки.

Страницы: 15 16 17 18 19 20 21 22 23 24 25


Другое по теме:

Возможности генной инженерии
Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло о ...

Вступление
"Клонирование" - получение потомков, являющихся точной генетической копией организма. Совокупность таких потомков-копий, происходящих от одного организма, называют клоном. Организмы в пределах каждого клона характеризуются одина ...

«Двуногие без перьев». О прямохождении
Ночью эта книга стучит по книжной полке, и так как она всегда движется по собственному усмотрению, ее нужно держать под медным грузом. В ней объясняется, как в памяти мысли преследуют друг друга и куда девается мысль, когда с ней пок ...